
M01 – Sorting

M01ZCF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

M01ZCF decomposes a permutation into cycles, as an aid to re-ordering ranked data.

2 Specification

SUBROUTINE M01ZCF(IPERM, M1, M2, ICYCL, IFAIL)
INTEGER IPERM(M2), M1, M2, ICYCL(M2), IFAIL

3 Description

M01ZCF is provided as an aid to re-ordering arbitrary data structures without using additional storage.
However users should consider carefully whether it is necessary to rearrange their data, or whether it
would be simpler and more efficient to refer to the data in sorted order using an index vector, or to create
a copy of the data in sorted order.

To rearrange data into a different order without using additional storage, the simplest method is to
decompose the permutation which specifies the new order, into cycles; and then to do a cyclic permutation
of the data items in each cycle. (This is the method used by the M01E- re-ordering routines.) Given
a vector IRANK which specifies the ranks of the data (as generated by the M01D- routines), M01ZCF
generates a new vector ICYCL, in which the permutation is represented in its component cycles, with
the first element of each cycle negated. For example, the permutation

5 7 4 2 1 6 3

is composed of the cycles

(1 5) (2 7 3 4) (6)

and the vector ICYCL generated by M01ZCF contains

-1 5 -2 7 3 4 -6

In order to rearrange the data according to the specified ranks:

item 6 must be left in place;

items 1 and 5 must be interchanged;

items 4, 2, 7 and 3 must be moved one place round the cycle.

The complete rearrangement can be achieved by the following code:

DO 10 K = M1, M2
I = ICYCL(K)
IF (I.LT.0) THEN

J = -I
ELSE

[swap items I and J]
ENDIF

10 CONTINUE

4 References

None.

[NP3390/19/pdf] M01ZCF.1



M01ZCF M01 – Sorting

5 Parameters

1: IPERM(M2) — INTEGER array Input

On entry: elements M1 to M2 of IPERM must contain a permutation of the integers M1 to M2.

2: M1 — INTEGER Input
3: M2 — INTEGER Input

On entry: M1 and M2 must specify the range of elements used in the array IPERM and the range
of values in the permutation, as specified under IPERM.

Constraint: 0 < M1 ≤ M2.

4: ICYCL(M2) — INTEGER array Output

On exit: elements M1 to M2 of ICYCL contain a representation of the permutation as a list of
cycles, with the first integer in each cycle negated. (See Section 3.)

5: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M2 < 1,
or M1 < 1,

or M1 > M2.

IFAIL = 2

Elements M1 to M2 of IPERM contain a value outside the range M1 to M2.

IFAIL = 3

Elements M1 to M2 of IPERM contain a repeated value.

If IFAIL = 2 or 3, elements M1 to M2 of IPERM do not contain a permutation of the integers M1
to M2.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

The example program reads a matrix of real numbers and rearranges its columns so that the elements
of the lth row are in ascending order. To do this, the program first calls M01DJF to rank the elements
of the lth row, and then calls M01ZCF to decompose the rank vector into cycles. It then rearranges the
columns using the framework of code suggested in Section 3. The value of l is read from the data-file.

M01ZCF.2 [NP3390/19/pdf]



M01 – Sorting M01ZCF

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* M01ZCF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER MMAX, NMAX
PARAMETER (MMAX=20,NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real T
INTEGER I, IFAIL, II, J, K, L, M, N

* .. Local Arrays ..
real RM(MMAX,NMAX)
INTEGER ICYCL(NMAX), IRANK(NMAX)

* .. External Subroutines ..
EXTERNAL M01DJF, M01ZCF

* .. Executable Statements ..
WRITE (NOUT,*) ’M01ZCF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) M, N, L
IF (M.GE.1 .AND. M.LE.MMAX .AND. N.GE.1 .AND. N.LE.NMAX .AND.

+ L.GE.1 .AND. L.LE.M) THEN
DO 20 I = 1, M

READ (NIN,*) (RM(I,J),J=1,N)
20 CONTINUE

IFAIL = 0
*

CALL M01DJF(RM,MMAX,L,L,1,N,’Ascending’,IRANK,IFAIL)
CALL M01ZCF(IRANK,1,N,ICYCL,IFAIL)

*
DO 60 K = 1, N

I = ICYCL(K)
IF (I.LT.0) THEN

J = -I
ELSE

* Swap columns I and J
DO 40 II = 1, M

T = RM(II,J)
RM(II,J) = RM(II,I)
RM(II,I) = T

40 CONTINUE
END IF

60 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Matrix sorted on row’, L
WRITE (NOUT,*)
DO 80 I = 1, M

WRITE (NOUT,99998) (RM(I,J),J=1,N)
80 CONTINUE

END IF
STOP

*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,12F6.1)

[NP3390/19/pdf] M01ZCF.3



M01ZCF M01 – Sorting

END

9.2 Program Data

M01ZCF Example Program Data
3 12 3
5.0 4.0 3.0 2.0 2.0 1.0 9.0 4.0 4.0 2.0 2.0 1.0
3.0 8.0 2.0 5.0 5.0 6.0 9.0 8.0 9.0 5.0 4.0 1.0
9.0 1.0 6.0 1.0 2.0 4.0 8.0 1.0 2.0 2.0 6.0 2.0

9.3 Program Results

M01ZCF Example Program Results

Matrix sorted on row 3

4.0 2.0 4.0 2.0 4.0 2.0 1.0 1.0 3.0 2.0 9.0 5.0
8.0 5.0 8.0 5.0 9.0 5.0 1.0 6.0 2.0 4.0 9.0 3.0
1.0 1.0 1.0 2.0 2.0 2.0 2.0 4.0 6.0 6.0 8.0 9.0

M01ZCF.4 (last) [NP3390/19/pdf]


